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1. Background
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Graph Embedding

• Node classification
• Link prediction
• Clustering
• Visualization (2-dimensional one)
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Convert discrete representation to continuous one.

𝑥!

𝑥"

Embed

𝑣# 
(Attributed/

non-attributed)

𝑣$ 𝑣#

𝑣$

Graphs can represent
• Social networks (Freeman 2000)
• Lexical networks (Ferrer+ 2001)
• Protein-protein interaction networks 

(Theocharidis+ 2009)
etc...
→ Practically important!

Input
Downstream Tasks

Compression (𝐷 ≪ 𝑉 )



Graph Embeddings on Riemannian Manifolds
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Recent Development of Graph Embeddings on 
Riemannian Manifolds.

https://en.wikipedia.org/wiki/Sphere *https://en.wikipedia.org/wiki/Hyperboloid_model

Spherical Space (Gu+ 2019)

https://en.wikipedia.org/wiki/Euclidean_space

Euclidean Space (Many studies) Hyperbolic Space 
(Nickel and Kiela 2017, 2018, etc)

https://en.wikipedia.org/wiki/Torus

Torus (Ebisu and Ichise 2018) Möbius Ring (Chen+ 2021)

→How should we choose
 the best Riemmanian manifold 
associated with a given graph?



Model Spaces
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https://en.wikipedia.org/wiki/Sphere *https://en.wikipedia.org/wiki/Hyperboloid_modelhttps://en.wikipedia.org/wiki/Euclidean_space

Spherical Space (K>0) Euclidean Space (K=0) Hyperbolic Space (K<0)

Spherical, Euclidean, and Hyperbolic spaces are chosen.

Cyclic structure (Gu+ 2019)

・・・

・
・
・

・
・
・

Tree-like structure (Krioukov+ 2010 etc)Flat structure

・Mathematically sound.
・Can be input of downstream tasks.Select 𝑫 and 𝑲 for the given graph.



MDL Principle (Rissanen 1978)
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Select the model that minimizes the code-length.

For data 𝑥 = 𝑥!, … , 𝑥" and model 𝑀, the MDL criterion is given by
𝑀𝐷𝐿 𝑥 𝑀 = 𝐿 𝑥 𝑀 + 𝐿 𝑀 ,

where 𝐿(𝑥|𝑀) and 𝐿(𝑀) is encoding functions, and the best model 
is given by

.𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛#	𝑀𝐷𝐿(𝑥|𝑀).

Minimum Description Length (MDL) Principle

• One of the information criteria (e.g., AIC (Akaike 1974), BIC (Schwarz 1978), etc).

• Theoretical properties such as consistency in model selection, etc (Yamanishi 2023).

For a parametric class of probability distributions 𝒫# =
𝑝 𝑥; 𝜃,𝑀 : 𝜃 ∈ Θ# ,	the NML code-length is given by

𝐿$#% 𝑥 𝑀 = − log 𝑝 𝑥; A𝜃 𝑥 ,𝑀 + log 𝐶" 𝑀 ,
𝐶" 𝑀 = ∑& 𝑝(𝑦; A𝜃 𝑦 ,𝑀): parametric complexity.

Example: Normalized Maximum Likelihood (NML) Code-Length (Shtarkov 1987)

MDL model selection by regarding the dimensionality and 
similarity as a model.



Agenda

2. Formulation of Graph 
Embedding
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Conventional Formulation of Graph Embedding
(Nickel and Kiela 2018)

8Logistic function.

𝑧#

𝑧$

𝑦#$
Connect points with logistic function.

𝛾 > 0



Non-Identifiability Problem

• The asymptotic normality for the maximum likelihood estimate 
does not hold.

• Conventional information criteria such as AIC (Akaike 1974), BIC 
(Schwarz 1978), etc… do not guarantee their rationales because 
their derivation depend on asymptotic theory.

• Calculation of the NML code-length is also difficult.

• Graph embedding is non-identifiable using isometry.
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Non-identifiability refers to a situation where there is no one-to-one 
correspondence between parameters and probability distributions. 
For all 𝑥, there exist 𝜃! ≠ 𝜃' such that the following equation holds.

𝑝 𝑥; 𝜃! = 𝑝 𝑥; 𝜃' .

Non-identifiability problem

The conventional formulation of hyperbolic embedding is 
non-identifiable. Thus, we use latent variable models.
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3. Dimensionality and 
Curvature Selection using 

DNML code-length
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Wrapped Normal Distribution on Hyperbolic Space 
(Nagano+ 2019)
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𝐻!

𝒯"𝐻!

1. Sample a tangent vector 𝑣# in 𝒯"𝐻!.

𝑣#
𝜇

𝐻!

𝒯"𝐻!

2. 𝑧# = 𝐸𝑥𝑝" 𝑣# .

𝑣#
𝜇

𝑧#

Jacobian
Probability density of 
each tangent vector.

Gaussian distribution
for each tangent vector



WNDs on Spherical Space
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2. 𝑧# = 𝐸𝑥𝑝"$ 𝑣# .1. Sample a tangent vector 𝑣# in 𝒯"!"𝑆
!.

𝑆!

𝒯$!𝑆!
𝑣#

𝜇$!

𝑆!

𝒯"!"𝑆
!

𝑣#
𝜇$!

Multivariate truncated normal dist.

* Wrapped normal distributions for Euclidean space is standard Gaussian distributions.

𝑧#



2. Decomposed Normalized Maximum Likelihood (DNML) 
Code-Length
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Use DNML code-length for LVMs.

・Hierarchical minimax regret and estimation optimality for Kullback-Leibler divergence 
(Yamanishi+ 2019).
→Derive 𝐿+,-(𝑦 ∣ 𝑧) and 𝐿+,-(𝑧) for two priors.

Assume that observable variable 𝑦 and latent variable 𝑧 follow

Then, DNML code-length is defined as

where

and H𝛽, AΣ, K𝛾: the maximum likelihood estimators.

DNML Code-Length (Yamanishi+ 2019)

Negative logarithm of the maximum likelihood

Penalty term (parametric complexity).

Our contribution: derived an explicit form of the 
approximation of each penalty term.



Numerical integration with the Gaussian quadrature 
(Vetterling+ 1992).

1. Derivation of 𝐿)*+(𝑦 ∣ 𝑧)
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NML is approximated using Fisher information.
(Rissanen 1996, Grunwald et al., 2015)

𝐿$#%(𝑦 ∣ 𝑧) is approximated by

With some calculation, we have

1. Derivation of 𝐿%&'(𝑦 ∣ 𝑧)

Integral over the parameter domain.

Fisher information

Likelihood



2. Derivation of 𝐿!"#(𝑧)
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For Euclidean and Hyperbolic cases, 𝐿$#%(𝑧) is given by

The derivation mainly depends on Rissanen’s g-function 
(Rissanen 2012).

For spherical case, parametric complexity of multivariate 
truncated  normal distribution is not trivial to obtain. Thus, we use 
the importance sampling:

2. Derivation of 𝐿%&'(𝑧)



Agenda

4. Experimental Results
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Experimental Results
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DNML can identify the curvature sign and dimensionality with sufficient amount 
of data, whereas accurate estimation of curvature is still challenging.

→Accurate estimation of curvature
is still challenging!



2. Experiment with Real-World Networks

18

DNML performs high conciseness with sufficient amount of nodes.



Summary
Research question
• How can we determine the dimensionality and 

curvature of graph embedding?

Solution
• Latent variable models for graph embedding.

• Universal latent variable models over all 
curvature using wrapped normal distributions.

• Apply decomposed normalized maximum likelihood 
(DNML) code-length to the model.

Contribution
• Derivation of the explicit formula of DNML code-

length.
• Empirical validation of our proposed method.
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