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1. Background
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Graph Embeddings and Dimensionality Selection

• Node classification [1].
• Link prediction [2].
• Clustering [3].
• Visualization [4].

• Several studies have been proposed.[5, 6, 7], but they are limited to 
Euclidean embeddings.
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Convert discrete representation to continuous one.

𝑥!

𝑥"

Embed

Dimensionality controls
1.performance (e.g., underfitting with low 

dimensionality and overfitting with high 
dimensionality).

2.time and space computational complexity.

Our contribution: proposed dimensionality selection 
method for hyperbolic graph embeddings.



Hyperbolic Embeddings

• The performance in 5-dimensional hyperbolic space is better than that of 
200-dimensional Euclidean space for several graph mining tasks [8].
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Fig.1 Triangles in a 
hyperbolic space (from [9]).

Vaster near 
the boundary.

Effective on hierarchical or tree-like structured graphs.
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← Analogy !   →
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Hyperbolic Space

Exponential

・・・

・
・
・

・
・
・

1
2

4

2!

・
・
・

# of Nodes
Tree

Exponential



Proposed Method
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1. Embed the graph 
in each dim.
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2. Calculate  
code-lengths

→ Select the dimensionality that minimizes 𝑳𝑫𝒌 𝒚, 𝒛 .

𝑦
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2. Dimensionality Selection 
using DNML Code-Length
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MDL Principle [10]

• One of the information criteria (e.g., AIC [11], BIC [12], 
etc).

• Theoretical properties such as consistency in model 
selection [10], etc.

• To apply the MDL principle, we need to do the following:
1. Formulate hyperbolic embeddings as a probabilistic 
model.
2. Derive 𝐿! 𝑦, 𝑧 : the encoding function associated with 
dimensionality 𝐷 ∈ ℳ.

7

Select the model that minimizes the code-length.



1. Latent Variable Model (LVM)

• Latent variable model (hyperbolic geometric graph, HGG) [9, 13]:
𝑝 𝑦, 𝑧 = 𝑝 𝑦 𝑧 𝑝(𝑧).
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Use LVM with hyperbolic geometric graphs (HGGs).

𝑧 = 𝑧+ +∈[.]: embedding as latent variables.
𝑦 = 𝑦+0 +,0 ∈2["]

: observed edges.

1. Sampling points in a hyperbolic space.

Sigmoid function.

Pseudo-
uniform dist.
of 
hyperbolic 
space.

• Power law of 
degree distribution [14].

• High clustering 
coefficient [14].

Properties

2. Connect points with some probability.

𝑧+
𝑧0

𝑦+0



2. Decomposed Normalized Maximum 
Likelihood (DNML) Code-Length [15, 16]
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Use DNML code-length for LVM.

• DNML is easy to calculate for latent 
variable models: 

where NML code-lengths [17] are given by

Negative logarithm of the maximum likelihood Penalty term (parametric complexity).

(𝛽, *𝜎: the maximum likelihood estimators.
Our contribution: derived the explicit form of the 
approximation of each penalty term.



Approximation of DNML #1
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Fisher 
information

Integral over the parameter domain.

Integral over the parameter domain.

NML is approximated with Fisher information [17, 18].



Approximation of DNML #2
• With some calculation, the Fisher information are 

given by:

• Numerical integration with the Gaussian 
quadrature [19]. 11



Typical Behavior of DNML
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High when 
D is large.

Low when 
D is large.

Select the correct 
dimensionality.
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3. Experimental Results
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1. Artificial Dataset
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where 𝑇!"# = 2, 𝐷$%&' = 16.

DNML-HGG selected the correct dimensionality with  
enough data.

1. Generate artificial graphs 
with 𝐷$%&' = 16.

2. Estimate .𝐷 with the proposed
method and the following 
competitive methods:

• AIC [11]
• BIC [12]
• MinGE [20]

(Euclidean dimensionality selection method)

Best !

Setting

Results



2. Scientific Collaboration Networks

15

The selected dimensionality suppresses the 
computational resource, whereas keeping the AUC. 

AUC
(Four graphs)

Selected Dim. Max. Performance

≥(Maximum)-0.01

1. Separate 𝑦 into 𝑦3%4+. and 𝑦3563.

2. Train with 𝑦3%4+. and estimate 4𝐷.
Then, perform link prediction on 𝑦3563.

𝑦3%4+.
𝑦3563

Setting

Results



3. WordNet[21] Datasets
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DNML-HGG selected the dimensionality that preserves 
the hierarchy of the graphs.

Scotch
Terrier

Animal
Cat Dog

・・・

・・・

Benefit
(Average of six graphs)

1. Generate graphs with hierarchical 
structure using is-a relation.

2. Calculate is-a-scores.

𝑂
𝑣

𝑢

𝑟(
𝑟& →High when “𝑢 is a 𝑣”.

Embedding

where 𝑇!"# = 2, 𝐷$%&' = max
)

𝑖𝑠 − 𝑎 − 𝑠𝑐𝑜𝑟𝑒.

Best !

Setting

Results
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4. Summary
&

Future Perspectives
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Summary & Future Perspective
• Summary

• Contribution #1: proposed dimensionality selection 
method for hyperbolic graph embeddings.

• Few studies for hyperbolic embeddings [22].
• Contribution #2: derived the explicit form of the 

approximation of DNML. 
• Experimentally showed the effectiveness of the 

proposed method.

• Future Perspective
• Extension for other Riemannian manifolds.

• Euclidean spaces, spherical spaces, etc…
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Appendix: Hyperboloid Model [23]

22
*https://en.wikipedia.org/wiki/Hyperboloid_model

Merits
・Numerically stable.
・Exponential map is easy to 
implement.

Distance:
Exponential Map:

Hyperbolic Space:

where



Appendix: Loss Function
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→Different sample size.

Division by n-1.Summation over 
all possible pairs.

Optimize − log𝒑(𝒚, 𝒛; 𝜷, 𝝈) through stochastic framework [24].

∝ 𝑛= ∝ 𝑛

→Uniformly sample S ⊂(possible pairs).
Riemannian Gradient Descent [25].

*https://andbloch.github.io/Stochastic-Gradient-Descent-on-Riemannian-Manifolds/



Appendix: Riemannian Gradient Descent
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Use Riemannian Gradient Descent [25].

*https://andbloch.github.io/Stochastic-Gradient-Descent-on-Riemannian-Manifolds/



Appendix: Derivation of DNML #1
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Appendix: Derivation of DNML #2

26



Appendix: Derivation of DNML #3
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Appendix: Derivation of DNML #4
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Appendix: Competitive Methods
• Three methods were chosen:

• AIC and BIC do not guarantee their 
rationales.

• Minimum graph entropy (MinGE [20]) is 
the dimensionality selection method of 
Euclidean embeddings.
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Appendix: Non-identifiability Problem
• Lack of one-to-one correspondence between 

parameter and probability distribution.

• Conventional information criteria such as 
Akaike’s information criterion (AIC) [11], 
Bayesian information criterion (BIC) [12], etc… 
do not guarantee their rationales because their 
derivation depend on the central limit theorem.
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𝐴𝐼𝐶 = − log 𝑝 𝑥; ,𝜃 + 𝑘,

𝐵𝐼𝐶 = − log 𝑝 𝑥; ,𝜃 +
𝑘
2
log 𝑛 ,

where 𝑘 is the number of free parameters, 
and 𝑛 is the number of data.



Appendix: Non-identifiability Problem of 
Hyperbolic Graph Embeddings

31Sigmoid function.

Rotation.

The same at 
two different parameters !

𝜙+ ≔ (𝑟+ , 𝜃+): embeddings, 𝑦 ∈ {0, 1}: edges.



Appendix: Training Detail
• All embeddings were initialized uniformly at random over −0.001, 0.001 7 .
• Chose the following parameters:

• 𝜎849 = 1.0, 𝜎8+. = 0.001,
• 𝛽849 = 10.0, 𝛽8+. = 1.0,
• 𝛽(;) = 1.0, 𝜎(;) = 1.0,
• 𝑅 = log 𝑛 .

• When making mini-batches, 10 negative samples were sampled per a 
positive sample.

• The learning rate was 0.1 for the first 10 epochs, and 34.375 for the 
remaining 790 epochs.

• The number of epochs was 800.
• The likelihood and the Fisher information were approximated as follows:
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Appendix: Selected Dimensionalities on 
Artificial Datasets

# of Nodes DNML-HGG AIC BIC MinGE

400 4.3±1.1 4.0±0.0 3.5±0.87 64.0±0.0

800 6.0±2.0 4.0±0.0 4.0±0.0 64.0±0.0

1600 4.3±1.1 4.0±0.0 4.0±0.0 64.0±0.0

3200 4.0±0.0 6.0±2.0 4.0±0.0 64.0±0.0

6400 16.0±0.0 7.0±1.7 4.0±0.0 64.0±0.0

12800 16.0±0.0 8.7±2.2 4.0±0.0 64.0±0.0
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OverestimateUnderestimateCorrect dim.
with enough 

nodes



Appendix: Selected Dimensionalities on 
Scientific Collaboration Networks

34



Appendix: Consiceness
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Appendix: Hierarchical Structure of Scientific 
Collaboration Networks

• Ex: networks of
co-authorship,
paper citation,
web pages, etc.

• We can approximate such structures as 
trees.
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・・・

・・・

・
・
・

・
・
・

Professor

Lecturer
Associate Professor

Real-world complex networks tend to have 
hierarchical structures.



Appendix: Graphical Model
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𝜎

𝑧𝛽

𝑦
Sigmoid function.

Embeddings (latent variable).

Edges (observable variable).

Pseudo-uniform distribution.



Appendix: Power law of degree distributions

• 𝑃 𝑘 ∝ 𝑘"#: degree distribution (k is the degree).
• The majority of papers are cited infrequently, 

while a small number of papers are cited 
frequently.

38FIg2. degree distribution in a graph (https://en.wikipedia.org/wiki/Scale-free_network).



Appendix: High Clustering Coefficient
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*https://www.geeksforgeeks.org/clustering-coefficient-graph-theory/

High when the graph contains many triangles.



Appendix:Ordinal MDL Principle
• Normalized maximum likelihood (NML, [10]) 

code length is defined as:
• 𝐿!"# 𝑥$ = − log 𝑝!"# 𝑥$

= − log 𝑝 𝑥$; *𝜃 𝑥$ + log -
%!"∈𝒳"

𝑝 𝑥("; *𝜃 𝑥("

where 𝒳 is the data domain and *𝜃(𝑥) is the 
maximum likelihood estimate.
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Low when the model is complex. High when the model is complex.


